• 信息
  • 详情
  • 联系
  • 推荐
发送询价分享好友 仪器臻选首页 仪器臻选分类 切换频道
1/5
Elyra 7 超高分辨率显微镜图1

Elyra 7 超高分辨率显微镜

2025-05-27 10:5160询价
价格 面议
发货 上海付款后3天内  
品牌 蔡司
该产品库存不足
产品详情

实时成像拥有远胜以往的分辨率——精准洞察,细至分子


蔡司Elyra 7搭载丰富的显微成像技术,可满足您跨尺度的实验需求,并在分辨率、速度和灵敏度方面严密契合样品的严苛要求。使用SIM Apotome进行快速光学切片,Lattice SIM可用于超分辨率成像,SIM²图像重构技术能够实现精细至60 nm的出色分辨率,而SMLM和TIRF则助您进行分子水平研究。将这些技术相结合,您可以从样品中获得更多信息,并对所得数据进行关联。

轻松获得优异品质的光学切片

分辨小至60 nm的结构

利用SMLM探索分子级细节

以高达255 fps的速度观察活细胞动态

使用Lattice SIM²获得更出色的分辨率


SIM²这种全新的图像重构算法可将SIM技术提升至全新水平,借助它,您能够将传统的SIM分辨率提高一倍。Lattice SIM²具有出色的非焦平面光抑制功能,即使面对高度散射的样品,也能在宽场显微镜下提供清晰的光学切片。无论是针对活体还是固定样品,SIM²都可以对Elyra 7所有基于结构光照明采集到的数据进行可靠的数据重构,同时大大缩小伪影。

提升实验速度和效率


在实现传统SIM分辨率提高一倍的同时,SIM²还使您能够以高达255 fps的速度对活体和固定样品进行低光毒性成像。将SIM²与Burst和Leap模式相结合,以比以往更快的速度进行超分辨率采集。使用SIM Apotome模式,甚至可以实现几乎无损的图像采集,这意味着每次重构图像只需要一个原始图像!也可以利用Elyra 7 Duolink同时对两个不同的染色结构进行成像,并使用多种颜色来进一步提高分辨率。

让研究更加灵活


Elyra 7几乎可以处理所有类型的样品,包括对光毒性敏感的培养细胞、具有较强散射性的秀丽隐杆线虫,以及厚度不超过100 μm的植物或组织切片。Elyra 7集数种显微技术于一身:Lattice SIM²、SIM² Apotome、宽场DIC、SMLM和TIRF。您可以使用这些技术中的任何一项或全部,将采集到的同一样品的图像进行关联,从而深化对样品的认知。您甚至可以在相关工作流中将Elyra 7与其他各种成像系统(如配备Airyscan的LSM共聚焦显微镜或扫描电子显微镜)结合使用。

Lattice SIM:三维超分辨率活细胞成像


Lattice SIM使用晶格点阵模式,而非传统SIM中的栅格线来照射样品区域。这样,成像速度便得到了大幅提高。此外,晶格模式还提供更高对比度,从而实现更可靠的图像重构。由于晶格模式照明的采样效率是传统SIM的2倍,因此样品照明所需的激光能量更少。这种晶格照明使SIM成为了理想的活细胞成像技术。晶格照明的光子效率得到了大幅提升,使您能够在提高成像速度的同时获得更高对比度和更低光漂白。

SIM²:使您的SIM分辨率提高一倍


SIM²是一种突破性新型图像重构算法,可提高结构光照明显微成像数据的分辨率和光学切片质量。SIM²兼容Elyra 7的所有SIM成像模式,并完全集成在ZEN软件中。与传统重构算法不同,SIM²是一种两步图像重构算法。第一步,进行衍射级次合并、去噪和频率抑制滤波。所有这些数字图像操作所产生的效果都转化为数字SIM点扩散函数(PSF)。后续的迭代去卷积使用的正是该PSF。与使用实验性PSF对基于硬件的显微数据去卷积的优势类似,SIM²算法在分辨率、光学切片和稳定性方面优于传统的单步图像重构法。

对常规染色样品进行多色超分辨率成像


Lattice SIM²可以让您对常规染色样品进行精细至60 nm分辨率的多色成像。由于联会复合体尺寸较小,以往只有通过复杂的方法(如对扩大三倍的样品进行超分辨率成像)才能对其进行三色成像。相比之下,Lattice SIM²无需对样品进行特殊处理或染色,便可以分辨出远低于100 nm距离的SYCP3(侧生组分)和SYCP1-C(横向细丝的C-末端)两条线状。更重要的是,三色图像提供了关于SYCP3蛋白和SYCP1蛋白之间距离的结构信息。即使在SYCP1蛋白中,N-和C-末端两个标记之间的分辨率不足50 nm,也可以清楚分离

SIM Apotome:灵活的光学切片成像技术


SIM Apotome
当使用宽场显微镜进行活细胞成像时,常常会受到非焦平面模糊信号及背景信号的干扰,图像对比度和分辨率因此而下降。Elyra 7的SIM Apotome成像模式采用结构光照明,提供高对比度及高分辨率(包括横向和轴向)的快速光学切片图像。

SIM² Apotome

SIM Apotome采集模式与SIM²重构算法相结合,让您可以对高对比度、高分辨率的快速活细胞成像进一步作出低光毒性调整。在以不同放大倍率获取大面积或大体积样品图像的同时,您也可以使用更快的光学切片速度来提高工作效率。

拓展您的应用

单分子定位显微技术

分子级别分辨率的三维成像


在单分子定位显微成像(SMLM)中,荧光分子被随机激活,在单点扩散函数(PSF)的众多分子中,只有一个处于激活状态。这使您能够以远高于PSF极限的定位精度确定分子的质心。一旦被记录,分子将会变为暗态,然后会重复激活与关闭的过程直至所有分子被捕获。在一幅新图像中将绘制出定位信息以创建超分辨率图像。凭借Elyra 7,您可以使用PALMdSTORMPAINT等SMLM技术,实现10 – 20 nm的横向定位精度。ZEN软件将对您的数据进行无缝图像重构。
此外,Elyra 7还提供基于PRILM技术的3D SMLM模式。为了编码Z轴位置,PSF已经过重塑,因此在只采集一个平面的同时,您可以获得1.4 µm深度的体积信息(轴向分辨率为20 – 40 nm),进而得到具有一致分子级精度的三维数据。

单分子定位显微技术(SMLM)


SMLM包括PALM、dSTORM和PAINT等技术。借助可见光范围内的高功率激光器和双相机检测,Elyra 7让研究人员能够将各种染料、标记物和荧光基团进行自由组合。

解析分子结构- SMLM让您能够获得单个蛋白质分子的精准位置。

确定分子之间的关系- 以分子级别的分辨率进行双通道检测。

捕获三维信息- 充分理解Z轴上的分子关系。

Gp210用Alexa Fluor 647标记。宽场图像(第一排左)、SMLM图像(第一排右)、局部放大图像(第二排左)。

收藏 0
联系方式
加关注0

卡尔蔡司(上海)管理有限公司

企业会员第1年
资料通过认证
保证金未缴纳